

1 Apache2::Filter - Perl API for Apache 2.0 Filtering

115 Feb 2014

1 Apache2::Filter - Perl API for Apache 2.0 FilteringApache2::Filter - Perl API for Apache 2.0 Filtering

1.1 Synopsis
 use Apache2::Filter ();

 # filter attributes
 my $c = $f->c;
 my $r = $f->r;
 my $frec = $f->frec();
 my $next_f = $f->next;

 my $ctx = $f->ctx;
 $f->ctx($ctx);

 # bucket brigade filtering API
 $rc = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 $rc = $f->next->pass_brigade($bb);
 $rc = $f->fflush($bb);

 # streaming filtering API
 while ($filter->read(my $buffer, $wanted)) {
 # transform $buffer here
 $filter->print($buffer);
 }
 if ($f->seen_eos) {
 $filter->print("filter signature");
 }

 # filter manipulations
 $r->add_input_filter(\&callback);
 $c->add_input_filter(\&callback);
 $r->add_output_filter(\&callback);
 $c->add_output_filter(\&callback);
 $f->remove;

1.2 Description
Apache2::Filter provides Perl API for Apache 2.0 filtering framework.

Make sure to read the Filtering tutorial|docs::2.0::user::handlers::filters .

1.3 Common Filter API
The following methods can be called from any filter handler:

1.3.1 c

Get the current connection object from a connection or a request filter:

15 Feb 20142

1.1 Synopsis

 $c = $f->c;

obj: $f (Apache2::Filter object)
ret: $c (Apache2::Connection object)
since: 2.0.00

1.3.2 ctx

Get/set the filter context data.

 $ctx = $f->ctx;
 $f->ctx($ctx);

obj: $f (Apache2::Filter object)
opt arg2: $ctx (SCALAR)

next context

ret: $ctx (SCALAR)

current context

since: 2.0.00

A filter context is created before the filter is called for the first time and it’s destroyed at the end of the
request. The context is preserved between filter invocations of the same request. So if a filter needs to
store some data between invocations it should use the filter context for that. The filter context is initialized
with the undef value.

The ctx method accepts a single SCALAR argument. Therefore if you want to store any other perl datas-
tructure you should use a reference to it.

For example you can store a hash reference:

 $f->ctx({ foo => ’bar’ });

and then access it:

 $foo = $f->ctx->{foo};

if you access the context more than once it’s more efficient to copy it’s value before using it:

 my $ctx = $f->ctx;
 $foo = $ctx->{foo};

to avoid redundant method calls. As of this writing $ctx is not a tied variable, so if you modify it need to
store it at the end:

315 Feb 2014

1.3.2 ctxApache2::Filter - Perl API for Apache 2.0 Filtering

 $f->ctx($ctx);

META: later we might make it a TIEd-variable interface, so it’ll be stored automatically.

Besides its primary purpose of storing context data across multiple filter invocations, this method is also
useful when used as a flag. For example here is how to ensure that something happens only once during
the filter’s life:

 unless ($f->ctx) {
 do_something_once();
 $f->ctx(1);
 }

1.3.3 frec

Get/set the Apache2::FilterRec (filter record) object.

 $frec = $f->frec();

obj: $f (Apache2::Filter object)
ret: $frec (Apache2::FilterRec object)
since: 2.0.00

For example you can call $frec->name to get filter’s name.

1.3.4 next

Return the Apache2::Filter object of the next filter in chain.

 $next_f = $f->next;

obj: $f (Apache2::Filter object)

The current filter object

ret: $next_f (Apache2::Filter object)

The next filter object in chain

since: 2.0.00

Since Apache inserts several core filters at the end of each chain, normally this method always returns an
object. However if it’s not a mod_perl filter handler, you can call only the following methods on it:
get_brigade , pass_brigade , c , r , frec and next . If you call other methods the behavior is
undefined.

The next filter can be a mod_perl one or not, it’s easy to tell which one is that by calling
$f->frec->name .

15 Feb 20144

1.3.3 frec

1.3.5 r

Inside an HTTP request filter retrieve the current request object:

 $r = $f->r;

obj: $f (Apache2::Filter object)
ret: $r (Apache2::RequestRec object)
since: 2.0.00

If a sub-request adds filters, then that sub-request object is associated with the filter.

1.3.6 remove

Remove the current filter from the filter chain (for the current request or connection).

 $f->remove;

obj: $f (Apache2::Filter object)
ret: no return value
since: 2.0.00

Notice that you should either complete the current filter invocation normally (by calling get_brigade
or pass_brigade depending on the filter kind) or if nothing was done, return
Apache2::Const::DECLINED and mod_perl will take care of passing the current bucket brigade
through unmodified to the next filter in chain.

Note: calling remove() on the very top connection filter doesn’t affect the filter chain due to a bug in
Apache 2.0 (which may be fixed in 2.1). So don’t use it with connection filters, till it gets fixed in Apache
and then make sure to require the minimum Apache version if you rely on.

Remember that if the connection is $c->keepalive) and the connection filter is removed, it won’t be
added until the connection is closed. Which may happen after many HTTP requests. You may want to
keep the filter in place and pass the data through unmodified, by returning
Apache2::Const::DECLINED . If you need to reset the whole or parts of the filter context between
requests, use the technique based on $c->keepalives counting.

This method works for native Apache (non-mod_perl) filters too.

1.4 Bucket Brigade Filter API
The following methods can be called from any filter, directly manipulating bucket brigades:

515 Feb 2014

1.4 Bucket Brigade Filter APIApache2::Filter - Perl API for Apache 2.0 Filtering

1.4.1 fflush

Flush a bucket brigade down the filter stack.

 $rc = $f->fflush($bb);

obj: $f (Apache2::Filter object)

The current filter

arg1: $bb (Apache2::Brigade object)

The brigade to flush

ret: $rc (APR::Const status constant)

Refer to the pass_brigade() entry.

excpt: APR::Error

Exceptions are thrown only when this function is called in the VOID context. Refer to the
get_brigade() entry for details.

since: 2.0.00

fflush is a shortcut method. So instead of doing:

 my $b = APR::Bucket::flush_create($f->c->bucket_alloc);
 $bb->insert_tail($b);
 $f->pass_brigade($bb);

one can just write:

 $f->fflush($bb);

1.4.2 get_brigade

This is a method to use in bucket brigade input filters. It acquires a bucket brigade from the upstream input
filter.

 $rc = $next_f->get_brigade($bb, $mode, $block, $readbytes);
 $rc = $next_f->get_brigade($bb, $mode, $block);
 $rc = $next_f->get_brigade($bb, $mode)
 $rc = $next_f->get_brigade($bb);

obj: $next_f (Apache2::Filter object)

The next filter in the filter chain.

15 Feb 20146

1.4.1 fflush

Inside filter handlers it’s usually $f->next . Inside protocol handlers: $c->input_filters .

arg1: $bb (APR::Brigade object)

The original bucket brigade passed to get_brigade() , which must be empty.

Inside input filter handlers it’s usually the second argument to the filter handler.

Otherwise it should be created:

 my $bb = APR::Brigade->new($c->pool, $c->bucket_alloc);

On return it gets populated with the next bucket brigade. That brigade may contain nothing if there
was no more data to read. The return status tells the outcome.

opt arg2: $mode (Apache2::Const :input_mode constant)

The filter mode in which the data should be read.

If inside the filter handler, you should normally pass the same mode that was passed to the filter
handler (the third argument).

At the end of this section the available modes are presented.

If the argument $mode is not passed, Apache2::Const::MODE_READBYTES is used as a
default value.

opt arg3: $block (APR::Const :read_type constant)

You may ask the reading operation to be blocking: APR::Const::BLOCK_READ , or nonblocking:
APR::Const::NONBLOCK_READ .

If inside the filter handler, you should normally pass the same blocking mode argument that was
passed to the filter handler (the forth argument).

If the argument $block is not passed, APR::Const::BLOCK_READ is used as a default value.

opt arg4: $readbytes (integer)

How many bytes to read from the next filter.

If inside the filter handler, you may want the same number of bytes, as the upstream filter, i.e. the
argument that was passed to the filter handler (the fifth argument).

If the argument $block is not passed, 8192 is used as a default value.

ret: $rc (APR::Const status constant)

On success, APR::Const::SUCCESS is returned and $bb is populated (see the $bb entry).

715 Feb 2014

1.4.2 get_brigadeApache2::Filter - Perl API for Apache 2.0 Filtering

In case of a failure -- a failure code is returned, in which case normally it should be returned to the
caller.

If the bottom-most filter doesn’t read from the network, then Apache2::NOBODY_READ is
returned (META: need to add this constant).

Inside protocol handlers the return code can also be APR::Const::EOF , which is success as well.

excpt: APR::Error

You don’t have to ask for the return value. If this function is called in the VOID context, e.g.:

 $f->next->get_brigade($bb, $mode, $block, $readbytes);

mod_perl will do the error checking on your behalf, and if the return code is not
APR::Const::SUCCESS , an APR::Error exception will be thrown. The only time you
want to do the error checking yourself, is when return codes besides APR::Const::SUCCESS are
considered as successful and you want to manage them by yourself.

since: 2.0.00

Available input filter modes (the optional second argument $mode) are:

Apache2::Const::MODE_READBYTES

The filter should return at most readbytes data

Apache2::Const::MODE_GETLINE

The filter should return at most one line of CRLF data. (If a potential line is too long or no CRLF is
found, the filter may return partial data).

Apache2::Const::MODE_EATCRLF

The filter should implicitly eat any CRLF pairs that it sees.

Apache2::Const::MODE_SPECULATIVE

The filter read should be treated as speculative and any returned data should be stored for later
retrieval in another mode.

Apache2::Const::MODE_EXHAUSTIVE

The filter read should be exhaustive and read until it can not read any more. Use this mode with
extreme caution.

Apache2::Const::MODE_INIT

The filter should initialize the connection if needed, NNTP or FTP over SSL for example.

15 Feb 20148

1.4.2 get_brigade

Either compile all these constants with:

 use Apache2::Const -compile => qw(:input_mode);

But it’s a bit more efficient to compile only those constants that you need.

Example:

Here is a fragment of a filter handler, that receives a bucket brigade from the upstream filter:

 use Apache2::Filter ();
 use APR::Const -compile => qw(SUCCESS);
 use Apache2::Const -compile => qw(OK);
 sub filter {
 my ($f, $bb, $mode, $block, $readbytes) = @_;

 my $rc = $f->next->get_brigade($bb, $mode, $block, $readbytes);
 return $rc unless $rc == APR::Const::SUCCESS;

 # ... process $bb

 return Apache2::Const::OK;
 }

Usually arguments $mode, $block , $readbytes are the same as passed to the filter itself.

You can see that in case of a failure, the handler returns immediately with that failure code, which gets
propagated to the downstream filter.

If you decide not check the return code, you can write it as:

 sub filter {
 my ($f, $bb, $mode, $block, $readbytes) = @_;

 $f->next->get_brigade($bb, $mode, $block, $readbytes);

 # ... process $bb

 return Apache2::Const::OK;
 }

and the error checking will be done on your behalf.

You will find many more examples in the filter
handlers|docs::2.0::user::handlers::filters and the protocol
handlers|docs::2.0::user::handlers::protocols tutorials.

1.4.3 pass_brigade

This is a method to use in bucket brigade output filters. It passes the current bucket brigade to the down-
stream output filter.

915 Feb 2014

1.4.3 pass_brigadeApache2::Filter - Perl API for Apache 2.0 Filtering

 $rc = $next_f->pass_brigade($bb);

obj: $next_f (Apache2::Filter object)

The next filter in the filter chain.

Inside output filter handlers it’s usually $f->next . Inside protocol handlers:
$c->output_filters .

arg1: $bb (APR::Brigade object)

The bucket brigade to pass.

Inside output filter handlers it’s usually the second argument to the filter handler (after potential
manipulations).

ret: $rc (APR::Const status constant)

On success, APR::Const::SUCCESS is returned.

In case of a failure -- a failure code is returned, in which case normally it should be returned to the
caller.

If the bottom-most filter doesn’t write to the network, then Apache2::NOBODY_WROTE is returned
(META: need to add this constant).

Also refer to the get_brigade() entry to see how to avoid checking the errors explicitly.

excpt: APR::Error

Exceptions are thrown only when this function is called in the VOID context. Refer to the
get_brigade() entry for details.

since: 2.0.00

The caller relinquishes ownership of the brigade (i.e. it may get destroyed/overwritten/etc. by the callee).

Example:

Here is a fragment of a filter handler, that passes a bucket brigade to the downstream filter (after some
potential processing of the buckets in the bucket brigade):

 use Apache2::Filter ();
 use APR::Const -compile => qw(SUCCESS);
 use Apache2::Const -compile => qw(OK);
 sub filter {
 my ($f, $bb) = @_;

 # ... process $bb

 my $rc = $f->next->pass_brigade($bb);

15 Feb 201410

1.4.3 pass_brigade

 return $rc unless $rc == APR::Const::SUCCESS;

 return Apache2::Const::OK;
 }

1.5 Streaming Filter API
The following methods can be called from any filter, which uses the simplified streaming functionality:

1.5.1 print

Send the contents of $buffer to the next filter in chain (via internal buffer).

 $sent = $f->print($buffer);

obj: $f (Apache2::Filter object)
arg1: $buffer (string)

The data to send.

ret: $sent (integer)

How many characters were sent. There is no need to check, since all should go through and if some-
thing goes work an exception will be thrown.

excpt: APR::Error
since: 2.0.00

This method should be used only in streaming filters.

1.5.2 read

Read data from the filter

 $read = $f->read($buffer, $wanted);

obj: $f (Apache2::Filter object)
arg1: $buffer (SCALAR)

The buffer to fill. All previous data will be lost.

opt arg2: $wanted (integer)

How many bytes to attempt to read.

If this optional argument is not specified -- the default 8192 will be used.

1115 Feb 2014

1.5 Streaming Filter APIApache2::Filter - Perl API for Apache 2.0 Filtering

ret: $read (integer)

How many bytes were actually read.

$buffer gets populated with the string that is read. It will contain an empty string if there was
nothing to read.

excpt: APR::Error
since: 2.0.00

Reads at most $wanted characters into $buffer . The returned value $read tells exactly how many
were read, making it easy to use it in a while loop:

 while ($filter->read(my $buffer, $wanted)) {
 # transform $buffer here
 $filter->print($buffer);
 }

This is a streaming filter method, which acquires a single bucket brigade behind the scenes and reads data
from all its buckets. Therefore it can only read from one bucket brigade per filter invocation.

If the EOS bucket is read, the seen_eos method will return a true value.

1.5.3 seen_eos

This methods returns a true value when the EOS bucket is seen by the read method.

 $ok = $f->seen_eos;

obj: $f (Apache2::Filter object)

The filter to remove

ret: $ok (boolean)

a true value if EOS has been seen, otherwise a false value

since: 2.0.00

This method only works in streaming filters which exhaustively $f->read all the incoming data in a
while loop, like so:

 while ($f->read(my $buffer, $wanted)) {
 # do something with $buffer
 }
 if ($f->seen_eos) {
 # do something
 }

15 Feb 201412

1.5.3 seen_eos

The technique in this example is useful when a streaming filter wants to append something to the very end
of data, or do something at the end of the last filter invocation. After the EOS bucket is read, the filter
should expect not to be invoked again.

If an input streaming filter doesn’t consume all data in the bucket brigade (or even in several bucket
brigades), it has to generate the EOS event by itself. So when the filter is done it has to set the EOS flag:

 $f->seen_eos(1);

when the filter handler returns, internally mod_perl will take care of creating and sending the EOS bucket
to the upstream input filter.

A similar logic may apply for output filters.

In most other cases you shouldn’t set this flag. When this flag is prematurely set (before the real EOS
bucket has arrived) in the current filter invocation, instead of invoking the filter again, mod_perl will
create and send the EOS bucket to the next filter, ignoring any other bucket brigades that may have left to
consume. As mentioned earlier this special behavior is useful in writing special tests that test abnormal
situations.

1.6 Other Filter-related API
Other methods which affect filters, but called on non-Apache2::Filter objects:

1.6.1 add_input_filter

Add &callback filter handler to input request filter chain.

 $r->add_input_filter(\&callback);

Add &callback filter handler to input connection filter chain.

 $c->add_input_filter(\&callback);

obj: $c (Apache2::Connection object) or $r (Apache2::RequestRec object)
arg1: &callback (CODE ref)
ret: no return value
since: 2.0.00

[META: It seems that you can’t add a filter when another filter is called. I’ve tried to add an output
connection filter from the input connection filter when it was called for the first time. It didn’t have any
affect for the first request (over keepalive connection). The only way I succeeded to do that is from that
input connection filter’s filter_init handler. In fact it does work if there is any filter additional filter of the
same kind configured from httpd.conf or via filter_init. It looks like there is a bug in httpd, where it
doesn’t prepare the chain of 3rd party filter if none were inserted before the first filter was called.]

1315 Feb 2014

1.6 Other Filter-related APIApache2::Filter - Perl API for Apache 2.0 Filtering

1.6.2 add_output_filter

Add &callback filter handler to output request filter chain.

 $r->add_output_filter(\&callback);

Add &callback filter handler to output connection filter chain.

 $c->add_output_filter(\&callback);

obj: $c (Apache2::Connection object) or $r (Apache2::RequestRec object)
arg1: &callback (CODE ref)
ret: no return value
since: 2.0.00

1.7 Filter Handler Attributes
Packages using filter attributes have to subclass Apache2::Filter :

 package MyApache2::FilterCool;
 use base qw(Apache2::Filter);

Attributes are parsed during the code compilation, by the function MODIFY_CODE_ATTRIBUTES, inher-
ited from the Apache2::Filter package.

1.7.1 FilterRequestHandler

The FilterRequestHandler attribute tells mod_perl to insert the filter into an HTTP request filter
chain.

For example, to configure an output request filter handler, use the FilterRequestHandler attribute
in the handler subroutine’s declaration:

 package MyApache2::FilterOutputReq;
 sub handler : FilterRequestHandler { ... }

and add the configuration entry:

 PerlOutputFilterHandler MyApache2::FilterOutputReq

This is the default mode. So if you are writing an HTTP request filter, you don’t have to specify this
attribute.

The section HTTP Request vs. Connection Filters delves into more details.

15 Feb 201414

1.7 Filter Handler Attributes

1.7.2 FilterConnectionHandler

The FilterConnectionHandler attribute tells mod_perl to insert this filter into a connection filter
chain.

For example, to configure an output connection filter handler, use the FilterConnectionHandler
attribute in the handler subroutine’s declaration:

 package MyApache2::FilterOutputCon;
 sub handler : FilterConnectionHandler { ... }

and add the configuration entry:

 PerlOutputFilterHandler MyApache2::FilterOutputCon

The section HTTP Request vs. Connection Filters delves into more details.

1.7.3 FilterInitHandler

The attribute FilterInitHandler marks the function suitable to be used as a filter initialization call-
back, which is called immediately after a filter is inserted to the filter chain and before it’s actually called.

 sub init : FilterInitHandler {
 my $f = shift;
 #...
 return Apache2::Const::OK;
 }

In order to hook this filter callback, the real filter has to assign this callback using the Filter-
HasInitHandler which accepts a reference to the callback function.

For further discussion and examples refer to the Filter Initialization Phase tutorial section.

1.7.4 FilterHasInitHandler

If a filter wants to run an initialization callback it can register such using the FilterHasInitHandler
attribute. Similar to push_handlers the callback reference is expected, rather than a callback name.
The used callback function has to have the FilterInitHandler attribute. For example:

 package MyApache2::FilterBar;
 use base qw(Apache2::Filter);
 sub init : FilterInitHandler { ... }
 sub filter : FilterRequestHandler FilterHasInitHandler(\&init) {
 my ($f, $bb) = @_;
 # ...
 return Apache2::Const::OK;
 }

1515 Feb 2014

1.7.2 FilterConnectionHandlerApache2::Filter - Perl API for Apache 2.0 Filtering

For further discussion and examples refer to the Filter Initialization Phase tutorial section.

1.8 Configuration
mod_perl 2.0 filters configuration is explained in the filter handlers tutorial.

1.8.1 PerlInputFilterHandler

See PerlInputFilterHandler .

1.8.2 PerlOutputFilterHandler

See PerlOutputFilterHandler .

1.8.3 PerlSetInputFilter

See PerlSetInputFilter .

1.8.4 PerlSetOutputFilter

See PerlSetInputFilter .

1.9 TIE Interface
Apache2::Filter also implements a tied interface, so you can work with the $f object as a hash
reference.

The TIE interface is mostly unimplemented and might be implemented post 2.0 release.

1.9.1 TIEHANDLE
 $ret = TIEHANDLE($stashsv, $sv);

obj: $stashsv (SCALAR)
arg1: $sv (SCALAR)
ret: $ret (SCALAR)
since: subject to change

1.9.2 PRINT
 $ret = PRINT(...);

15 Feb 201416

1.8 Configuration

obj: ... (XXX)
ret: $ret (integer)
since: subject to change

1.10 See Also
mod_perl 2.0 documentation.

1.11 Copyright
mod_perl 2.0 and its core modules are copyrighted under The Apache Software License, Version 2.0.

1.12 Authors
The mod_perl development team and numerous contributors.

1715 Feb 2014

1.10 See AlsoApache2::Filter - Perl API for Apache 2.0 Filtering

Table of Contents:
.......... 11 Apache2::Filter - Perl API for Apache 2.0 Filtering
................... 21.1 Synopsis
................... 21.2 Description
................. 21.3 Common Filter API
.................... 21.3.1 c
................... 31.3.2 ctx
................... 41.3.3 frec
................... 41.3.4 next
.................... 51.3.5 r
.................. 51.3.6 remove
............... 51.4 Bucket Brigade Filter API
.................. 61.4.1 fflush
................ 61.4.2 get_brigade
................ 91.4.3 pass_brigade
................ 111.5 Streaming Filter API
.................. 111.5.1 print
................... 111.5.2 read
................. 121.5.3 seen_eos
................ 131.6 Other Filter-related API
............... 131.6.1 add_input_filter
.............. 141.6.2 add_output_filter
................ 141.7 Filter Handler Attributes
............. 141.7.1 FilterRequestHandler
............ 151.7.2 FilterConnectionHandler
.............. 151.7.3 FilterInitHandler
............. 151.7.4 FilterHasInitHandler
.................. 161.8 Configuration
............. 161.8.1 PerlInputFilterHandler
............ 161.8.2 PerlOutputFilterHandler
.............. 161.8.3 PerlSetInputFilter
.............. 161.8.4 PerlSetOutputFilter
.................. 161.9 TIE Interface
................. 161.9.1 TIEHANDLE
.................. 161.9.2 PRINT
................... 171.10 See Also
................... 171.11 Copyright
................... 171.12 Authors

i15 Feb 2014

Table of Contents:Apache2::Filter - Perl API for Apache 2.0 Filtering

	1€€Apache2::Filter - Perl API for Apache 2.0 Filtering
	1.1€€Synopsis
	1.2€€Description
	1.3€€Common Filter API
	1.3.1€€c
	1.3.2€€ctx
	1.3.3€€frec
	1.3.4€€next
	1.3.5€€r
	1.3.6€€remove

	1.4€€Bucket Brigade Filter API
	1.4.1€€fflush
	1.4.2€€get_brigade
	1.4.3€€pass_brigade

	1.5€€Streaming Filter API
	1.5.1€€print
	1.5.2€€read
	1.5.3€€seen_eos

	1.6€€Other Filter-related API
	1.6.1€€add_input_filter
	1.6.2€€add_output_filter

	1.7€€Filter Handler Attributes
	1.7.1€€FilterRequestHandler
	1.7.2€€FilterConnectionHandler
	1.7.3€€FilterInitHandler
	1.7.4€€FilterHasInitHandler

	1.8€€Configuration
	1.8.1€€PerlInputFilterHandler
	1.8.2€€PerlOutputFilterHandler
	1.8.3€€PerlSetInputFilter
	1.8.4€€PerlSetOutputFilter

	1.9€€TIE Interface
	1.9.1€€TIEHANDLE
	1.9.2€€PRINT

	1.10€€See Also
	1.11€€Copyright
	1.12€€Authors

