mod_perl and Relational Databases 1 mod_perl and Relational Databases

1 mod_perl and Relational Databases

15 Feb 2014 1

1.1 Description

1.1 Description

Creating dynamic websites with mod_perl often involves using relational databasehe: : DBI ,
which provides a database connections persistence which boosts the mod_perl performance, is explained
in this chapter.

1.2 Why Relational (SQL) Databases

Nowadays millions of people surf the Internet. There are millions of Terabytes of data lying around. To
manipulate the data new smart techniques and technologies were invented. One of the major inventions
was the relational database, which allows us to search and modify huge stores of data very quickly. We
useSQL (Structured Query Language) to access and manipulate the contents of these databases.

1.3 Apache::DBI - Initiate a persistent database connection

When people started to use the web, they found that they needed to write web interfaces to their databases.
CGil is the most widely used technology for building such interfaces. The main limitation of a CGlI script
driving a database is that its database connection is not persistent - on every request the CGI script has to
re-connect to the database, and when the request is completed the connection is closed.

Apache: : DBl was written to remove this limitation. When you use it, you have a database connection
which persists for the process’ entire life. So when your mod_perl script needs to use a database,
Apache: : DBl provides a valid connection immediately and your script starts work right away without
having to initiate a database connection first.

This is possible only with CGI running under a mod_perl enabled server, since in this model the child
process does not quit when the request has been served.

It's almost as straightforward as is it sounds; there are just a few things to know about and we will cover
them in this section.

1.3.1 Introduction

The DBI module can make use of #tygache: : DBI module. When it loads, the DBI module tests if the
environment variabl&ENV{ MOD_PERL} is set, and if theApache: : DBI module has already been
loaded. If so, the DBI module will forward every connect() request toAieche: : DBI module.
Apache: : DBl uses the ping() method to look for a database handle from a previous connect() request,
and tests if this handle is still valid. If these two conditions are fulfilled it just returns the database handle.

If there is no appropriate database handle or if the ping() methodAfadlshe: : DBl establishes a new
connection and stores the handle for later re-use. When the script is run again by a child that is still
connectedApache: : DBl just checks the cache of open connections by matchirdgsheisername and
password parameters against it. A matching connection is returned if available or a new one is initiated
and then returned.

2 15 Feb 2014

mod_perl and Relational Databases 1.3.2 When should this module be used and when shouldn't it be used?

There is no need to delete the disconnect() statements from your code. They won't do anything because
theApache: : DBI module overloads the disconnect() method with an empty one.

1.3.2 When should this module be used and when shouldn’t it be
used?

You will want to use this module if you are opening several database connections to the server.
Apache: : DBl will make them persistent per child, so if you have ten children and each opens two
different connections (with different connect() arguments) you will have in total twenty opened and persis-
tent connections. After the initial connect() you will save the connection time for every connect() request
from yourDBI module. This can be a huge benefit for a server with a high volume of database traffic.

You mustnot use this module if you are opening a special connection for each of your users (meaning that
the login arguments are different for each user). Each connection will stay persistent and after a certain
period the number of open connections will reach the allowed limit (configured by the database server)
and new database connection opening requests will be refused, rendering your service unusable for some
of your users.

If you want to uséd\pache: : DBl but you have both situations on one machine, at the time of writing the
only solution is to run two Apache/mod_perl servers, one whichApeshe: : DBl and one which does
not.

1.3.3 Configuration

After installing this module, the configuration is simple - add the following directiia¢ t@d. conf

Per | Modul e Apache: : DBI

Note that it is important to load this module before any otfperche* DBI module and before tHeBlI
module itself!

You can skip preloadin®BIl , sinceApache: : DBl does that. But there is no harm in leaving it in, as
long as it is loaded aftéypache: : DBI .

1.3.4 Preopening DBI connections

If you want to make sure that a connection will already be opened when your script is first executed after a
server restart, then you should usedbanect _on_i ni t () method in the startup file to preload every
connection you are going to use. For example:

15 Feb 2014 3

1.3.5 Debugging Apache::DBI

Apache: : DBl - >connect _on_ini t
("DBI: nysql : nyDB: nyserver",
"user nanme"
" passwd",

{

PrintError => 1, # warn() on errors
Rai seError => 0, # don't die on error
AutoCommit => 1, # commit executes imediately
}
)

As noted above, use this method only if you want all of apache to be able to connect to the database server
as one user (or as a very few users), i.e. if your user(s) can effectively share the connectarudeo
this method if you want for example one unique connection per user.

Be warned though, that if you calbnnect _on_i ni t () and your database is down, Apache children
will be delayed at server startup, trying to connect. They won't begin serving requests until either they are
connected, or the connection attempt fails. Depending on your DBD driver, this can take several minutes!

1.3.5 Debugging Apache::DBI

If you are not sure if this module is working as advertised, you should enable Debug mode in the startup
script by:

$Apache: : DBl : : DEBUG = 1

Starting withApacheDBI - 0. 84, setting$Apache: : DBl : : DEBUG = 1 will produce only minimal
output. For a full trace you should $Apache: : DBI : : DEBUG = 2.

After setting the DEBUG level you will see entries in ¢rer or _| og both whemApache: : DBI initial-

izes a connection and when it returns one from its cache. Use the following command to view the log in
real time (yourerror | og might be located at a different path, it is set in the Apache configuration
files):

tail -f /usr/local/apache/logs/error_|og

I useal i as (int csh) so | do not have to remember the path:

alias err "tail -f /usr/local/apache/logs/error_|og"

1.3.6 Database Locking Risks

Be very careful when locking the databadeO@K TABLE ...) or singular rows if you use
Apache: : DBl or similar persistent connections. MySQL threads keep tables locked until the thread ends
(connection is closed) or the tables are unlocked. If your session die()’'s while tables are locked, they will
stay neatly locked as your connection won'’t be closed either.

See the section Handling the 'User pressed Stop button’ case for more information on prevention.

4 15 Feb 2014

mod_perl and Relational Databases 1.3.7 Troubleshooting

1.3.7 Troubleshooting
1.3.7.1 The Morning Bug

The SQL server keeps a connection to the client open for a limited period of time. In the early days of
Apache: : DBl developers were bitten by so callgdrning bug, when every morning the first users to
use the site received\m Dat a Ret ur ned message, but after that everything worked fine.

The error was caused Bypache: : DBl returning a handle of the invalid connection (the server closed it
because of a timeout), and the script was dying on that errorpiTing() method was introduced to
solve this problem, but it didn't worked properly #pache: : DBI version 0.82 was released. In that
version and afterwards ping() was called insideethal block, which resolved the problem.

It's possible that somBBD: : drivers don’'t have the ping() method implemented. Apache: : DBI
manpage explains how to write one.

Another solution was found - to increase the timeout parameter when starting the database server.
Currently we startuply SQL server with a scriptaf e_mysql , so we have modified it to use this option:

nohup $l edir/nysqld [sni pped other options] -O wait_tineout=172800

172800 seconds is equal to 48 hours. This change solves the problem, but the ping() method works prop-
erly inDBD: : mysql as well.

1.3.7.2 Opening Connections With Different Parameters

WhenApache: : DBl receives a connection request, before it decides to use an existing cached connec-
tion it insists that the new connection be opened in exactly the same way as the cached connection. If you
have one script that sedsit oConmri t and one that does ndtpache: : DBl will make two different
connections. So if for example you have limited Apache to 40 servers at most, instead of having a
maximum of 40 open connections you may end up with 80.

So these two connect() calls will create two different connections:

ny $dbh = DBI - >connect
("DBI:nysql :test:local host",
{
PrintError => 1, # warn() on errors
Rai seError => 0, # don’t die on error
Aut oCommit => 1, # commit executes inmediately

}

) or die "Cannot connect to database: $DBl::errstr”;

ny $dbh = DBI - >connect
("DBI:nysql :test:local host",
{
PrintError => 1, # warn() on errors
Rai seError => 0, # don’t die on error
Aut oCommit => 0, # don’t conmit executes imediately

}

) or die "Cannot connect to database: $DBl::errstr”;

15 Feb 2014 5

1.3.7 Troubleshooting

Notice that the only difference is in the valuefott oComni t .

However, you are free to modify the handle immediately after you get it from the cache. So always initiate
connections using the same parameters andwseiContii t (or whatever) afterwards. Let's rewrite the
second connect call to do the right thing (not to create a new connection):

ny $dbh = DBI - >connect
("DBI:nysql :test:local host",

{

PrintError => 1, # warn() on errors
Rai seError => 0, # don’t die on error
Aut oCommit => 1, # commit executes inmediately

}

) or die "Cannot connect to database: $DBl::errstr”;
$dbh- >{ AutoConmit} = 0; # don’t commit if not asked to

When you aren’t sure whether you're doing the right thing, turn debug mode on.

However, when thé&dbh attribute is altered after connect() it affects all other handlers retrieving this
database handle. Therefore it's best to restore the modified attributes to their original value at the end of
database handle usage. AsAplache: : DBI version 0.88 the caller has to do it manually. The simplest
way to handle this is to localize the attributes when modifying them:

ny $dbh = DBl ->connect(...) ...

| ocal $dbh->{LongReadLen} = 40;
}

Here theLongReadLen attribute overrides the value set in the connect() call or its default value only
within the enclosing block.

The problem with this approach is that prior to Perl version 5.8.0 this causes memory leaks. So the only
clean alternative for older Perl versions is to manually restorhthis values:

my @ttrs = gw(LongReadLen PrintError);
ny Yerig = ();

ny $dbh = DBI->connect(...) ...

store the val ues away

$orig{$ } = $dbh->{$ } for @ttrs;
do | ocal nodifications

$dbh- >{ LongReadLen} = 40;
$dbh->{PrintError} = 1;

do sonething with the fil ehandl e
...

now restore the val ues
$dbh->{$_} = $orig{$_} for @ttrs;

Another thing to remember is that with some database servers it's possible to access more than one
database using the same database connection. MySQL is one of those servers. It allows you to use a fully
gualified table specification notation. So if there is a datafmswith a tabletest and databasear with

its own tableest, you can always use:

6 15 Feb 2014

mod_perl and Relational Databases 1.3.7 Troubleshooting

SELECT fromfoo.test ...

or:

SELECT from bar.test ...

So no matter what database you have used in the database name string in the connect() call (e.g.:
DBl : mysql : f oo: | ocal host) you can still access both tables by using a fully qualified syntax.

Alternatively you can switch databases WWBE f oo and USE bar, but this approach seems less
convenient, and therefore error-prone.

1.3.7.3 Cannot find the DBI handler

You must uséBl : : connect () as in normal DBI usage to get your $dbh database handler. Using the
Apache: : DBl does not eliminate the need to write propBl code. As the\pache: : DBl man page
states, you should program as if you are not udp@che: : DBl at all. Apache: : DBl will override

the DBI methods where necessary and return your cached connectiodi #mgnnect () call will be

just ignored.

1.3.7.4 Apache:DBI does not work
Make sure you have it installed.

Make sure you configured mod_perl with either:
PERL_CHI LD_I Nl T=1 PERL_STACKED_HANDLERS=1

or
EVERYTH NG=1

Use the example script eg/startup.pl (in the mod_perl distribution). Remove the comment from the line.
use Apache: : DebugDBI ;

and adapt the connect string. Do not change anything in your scripts for uggadthe: : DBI .

1.3.7.5 Skipping connection cache during server startup

Does your error_log look like this?

10169 Apache: : DBl Perl Chil dl nitHandl er

10169 Apache: : DBl ski ppi ng connecti on cache during server startup
Dat abase handl e destroyed w thout explicit disconnect at
lusr/libl/perl5/site_perl/5.005/ Apache/ DBI.pm Iine 29.

If so you are trying to open a database connection in the parent httpd process. If you do, children will each
get a copy of this handle, causing clashes when the handle is used by two processes at the same time. Each
child must have its own, unique, connection handle.

15 Feb 2014 7

1.4 mysql_use_result vs. mysqgl_store_result.

To avoid this problemApache: : DBl checks whether it is called during server startup. If so the module
skips the connection cache and returns immediately without a database handle.

You must use thApache: : DBI - >connect _on_i ni t () method in the startup file.

1.3.7.6 Debugging code which deploys DBI

To log a trace oDBI statement execution, you must set B _TRACE environment variable. The
Per | Set Env DBI _TRACE directive must appear before you logghche: : DBl andDBI .

For example if you usBpache: : DBl , modify yourht t pd. conf with:

Per | Set Env DBl _TRACE "3=/tnp/dbitrace.| og"
Per | Modul e Apache: : DBI

Replace3 with the TRACE level you want. The traces from each request will be appended to
[t np/ dbi trace. | og. Note that the logs might interleave if requests are processed concurrently.

Within your code you can control trace generation with the trace() method:

DBl - >t race($trace_| evel)
DBl - >trace(S$trace_l evel, $trace_fil enane)

DBI trace information can be enabled for all handles using this DBI class method. To enable trace infor-
mation for a specific handle use the sim$$ar >t r ace method.

Using the handle trace option wittbdbh or $st h is handy for limiting the trace info to the specific bit
of code that you are interested in.

Trace Levels:

0 - trace disabled.

1 - trace DBI method calls returning with results.

2 - trace method entry with parameters and exit with results.

3 - as above, adding some high-level information from the driver and also adding some internal
information from the DBI.

4 - as above, adding more detailed information from the driver and also including DBI mutex
information when using threaded perl.

® 5 and above - as above but with more and more obscure information.

1.4 mysgl_use_result vs. mysqgl_store_result.

Since many mod_perl developers use mysql as their preferred SQL engine, these notes explain the differ-
ence betweenysgl _use_result() andnysqgl _store_result(). The two influence the speed
and size of the processes.

8 15 Feb 2014

mod_perl and Relational Databases 1.5 Transactions Not Committed with MySQL InnoDB Tables

TheDBD: : mysqgl (version 2.0217) documentation includes the following snippet:

mysql _use_result attribute: This forces the driver to use
nmysql _use_result rather than nysql _store_result. The forner is
faster and | ess nmenory consuming, but tends to bl ock other
processes. (That’'s why nysql _store_result is the default.)

Think about it in client/server terms. When you ask the server to spoon-feed you the data as you use it, the
server process must buffer the data, tie up that thread, and possibly keep any database locks open for a
long time. So if you read a row of data and ponder it for a while, the tables you have locked are still
locked, and the server is busy talking to you every so often. Timgsigl _use_resul t ().

If you just suck down the whole dataset to the client, then the server is free to go about its business serving
other requests. This results in parallelism since the server and client are doing work at the same time,
rather than blocking on each other doing frequent I/O. Thmtsg)l _store result().

As the mysqgl manual suggests: you should notmyseql _use_resul t () if you are doing a lot of
processing for each row on the client side. This can tie up the server and prevent other threads from updat-
ing the tables.

1.5 Transactions Not Committed with MySQL InnoDB
Tables

Sometimes, when using MySQL'’s InnoDB table type, you may notice that changes you committed in one
process don’'t seem to be visible to other processes. You may not be aware that InnoDB tables use a
default approach to transactions that is actually more cautious than PostgreSQL or Oracle’s default. It's
called "repeatable read", and the gist of it is that you don’t see updates made in other processes since your
last commit. There is an explanation of this here: http://dev.mysqgl.com/doc/mysqgl/en/InnoDB |Consis-
ltent read example.html

This is actually not directly related to mod_perl, but you wouldn’t notice this issue when using CGI
because reconecting to the database on each request resets things just as doing a commit does. It is the
persistent connections used with mod_perl that make this issue visible.

If you suspect this is causing you problems, the simplest way to deal with it is to change the isolation level
to "read committed" -- which is more like what PostgreSQL and Oracle do by default -- with the "set
transaction" command, described hefre: http://dev.mysqgl.com/doc/mysql/en/InnoDB _transactipn_isola-

1.6 Optimize: Run Two SQL Engine Servers

Sometimes you end up running many databases on the same machine. These might have very varying
database needs (such as one db with sessions, very frequently updated but tiny amounts of data, and
another with large sets of data that's hardly ever updated) you might be able to gain a lot by running two
differently configured databases on one server. One would benefit from lots of caching, the other would
probably reduce the efficiency of the cache but would gain from fast disk access. Different usage profiles
require vastly different performance needs.

15 Feb 2014 9

http://dev.mysql.com/doc/mysql/en/InnoDB_Consistent_read_example.html
http://dev.mysql.com/doc/mysql/en/InnoDB_Consistent_read_example.html
http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isolation.html
http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isolation.html

1.7 Some useful code snippets to be used with relational Databases

This is basically a similar idea to having two Apache servers, each optimized for its specific requirements.

1.7 Some useful code snippets to be used with relational
Databases

In this section you will find scripts, modules and code snippets to help you get started using relational
Databases with mod_perl scripts. Note that | work witsql (|http://www.mysqgl.com), so the code you

find here will work out of box with mysq|l. If you use some other SQL engine, it might work for you or it
might need some changes. YMMV.

1.7.1 Turning SQL query writing into a short and simple task

Having to write many queries in my CGl scripts, persuaded me to write a stand alone module that saves
me a lot of time in coding and debugging my code. It also makes my scripts much smaller and easier to
read. | will present the module here, with examples following:

Notice theDESTROY block at the end of the module, which makes various cleanups and allows this
module to be used under mod_perl amdl_cgi as well. Note that you will not get the benefit of persis-
tent database handles with mod_cgi.

1.7.2 The My::DB module

The code/My-DB.pm:
package My:: DB;

use strict;
use 5. 004,

use DBI;

use vars gw %) ;
use constant DEBUG => O;

% =

(

db => {
DB_NAME => 'foo’',
SERVER => '] ocal host’,
USER => ' put _usernane_here’,

USER PASSWD => ’'put_passwd_here’,
H

)

use Carp gw croak verbose);
#l ocal $SI G(__WARN__} = \&Car p:: cl uck;

untaint the path by explicit setting
| ocal $ENV{PATH = '/bin:/usr/bin;

10 15 Feb 2014

http://www.mysql.com/

mod_perl and Relational Databases 1.7.2 The My::DB module

BT

sub new {
ny $proto = shift;
ny $class = ref($proto) || $proto;
ny $self = {};

connect to the DB, Apache:: DBl takes care of caching the connections
save into a dbh - Database handl e obj ect
$sel f->{dbh} = DBI->connect ("DBI: mysql : $c{db}{DB_NANE}: : $c{db} { SERVER} ",
$c{db} { USER},
$c{ db} { USER_PASSWD} ,
{
PrintError => 1, # warn() on errors
Rai seError => 0, # don't die on error
AutoCommit => 1, # commit executes inmediately
}
)

or die "Cannot connect to database: $DBl::errstr"”;

we want to die on errors if in debug node
$sel f->{dbh}->{RaiseError} = 1 if DEBUG

init the sth - Statenent handl e object
$sel f->{sth} = "'’;

bl ess ($sel f, $class);
$sel f;

} # end of sub new

BHHH AR HH AR R R
REHHBHHHARHHBBHHAREHH B HAABHHHBAHHR

it i
H#it# SQL Functions H#Hit#
HH HHH

BHHHBHHHH R
HHHHBHHH B HH B R R H R R H R R H R H R R R

print debug nessages

sub d{
we want to print the trace in debug node
print "".join("", @)."\n" if DEBUG

} # end of sub d

HHHHHBHAHBHBHHHHBH AR B AR A A R A AR R A AR
return a count of matched rows, by conditions

#

$count = sql _count_mat ched($t abl e_nane,\ @onditions,\@estrictions);
#

conditions nust be an array so we can pass nore than one colum with
the same nane.

#
@onditions = (colum => [’'conp_sign’,’'value'],
f oo = ['>",15],

15 Feb 2014 11

1.7.2 The My::DB module

f 0o = ['<,30],
)

The sub knows automatically to detect and quote strings

Restrictions are the list of restrictions |like (' order by email’)

HoHHHH R

HHHHHBHBHBHBHHHHBHBHBHEHIH
sub sql _count _nat ched{

ny $self = shift;

ny $table = shift || '";

ny $r_conds = shift || [];

ny $r_restr = shift || [];
we want to print the trace in debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG
build the query

my $do_sql = "SELECT COUNT(*) FROM $table ";

ny @here = ();

for(ny $i=0; $i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r_conds[$i +1][O] ,
sqgl _quot e(sql _escape($$r_conds[$i +1][1]));

Add the where clause if we have one
$do_sql .= "WHERE ". join " AND ", @here if @here

restrictions (DONT put commas!)
$do_sql .=" ". join" ", @%$r_restr} if @$r_restr};

d("SQ.: $do_sql") if DEBUG

do query
$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);
$sel f->{sth}->execute();
nmy ($count) = $sel f->{sth}->fetchrow array;

d("Result: $count") if DEBUG
$sel f->{sth}->finish
return $count;

} # end of sub sqgl _count_matched

HHHHHHHAH B H R AR A A R A A R A A R A R R

return a count of matched distinct rows, by conditions

#

$count = sql _count_mat ched_di stinct ($tabl e_nane,\ @onditions,\@estrictions);
#

conditions nust be an array so we can path nore than one colum wth

the same nane.

#

@onditions = (colum => [’ conp_sign',’'value'],
f oo = ['>",15],

f oo = ['<,30],

12 15 Feb 2014

mod_perl and Relational Databases 1.7.2 The My::DB module

)
The sub knows automatically to detect and quote strings
Restrictions are the list of restrictions like ('order by email’)

#
#
#
#
#
#
This a slow inplenmentation - because it cannot use select(*), but
brings all the records in first and then counts them In the next
version of nysqgl there will be an operator 'select (distinct *)

which will nake things much faster, so we will just change the

internals of this sub, without changing the code itself.

#

HUH AR R H R YR AR R R H AR AR RS

sub sql _count _nmat ched_di stinct{

ny $self = shift;

ny $table = shift || '";

my $r_conds = shift || [];

ny $r_restr = shift || [];
we want to print the trace in debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]1") if DEBUG
build the query

my $do_sql = "SELECT DI STINCT * FROM $table ";

my @here = ();

for(ny $i=0;$i <@ $r_conds}; $i =$i +2) {

push @here, join ,
$$r_conds[$i],
$$r _conds[$i +1][O],
sql _quot e(sql _escape($$r_conds[$i +1][1]));
}

Add the where clause if we have one
$do_sql .= "WHERE ". join " AND ", @here if @here

restrictions (DONT put commas!)
$do_sql .= " ". join" ", @%$r_restr} if @$r_restr};

d("SQ: $do_sql") if DEBUG
do query

S$self->{sth} = $sel f->{dbh}->prepare($do_sql);
$sel f->{sth}->execute();

ny $count = @ 3$sel f->{dbh}->sel ectal |l _arrayref($do_sql)};
ny ($count) = $sel f->{sth}->fetchrow array

d("Result: $count") if DEBUG
$sel f->{sth}->finish

return $count;

} # end of sub sqgl _count_mat ched_di stinct

HUHHHHHHH R H R H R R
return a single (first) matched val ue or undef, by conditions and

15 Feb 2014 13

1.7.2 The My::DB module

The sub knows automatically to detect and quote strings
restrictions is alist of restrictions like ('order by email’)

HHHHHHHBH B H R R AT H 7]
sub sql _get _matched_val ue{

ny $sel f = shift;

ny $table = shift || '";
ny $colum = shift || '’;
nmy $r_conds = shift || [];
ny $r_restr = shift || [];

we want to print in the trace debug node
d("[".(caller(2))[3]." ".(caller(1))[3]." - ".

build the query
ny $do_sqgl = "SELECT $col um FROM $table "

my @here = ();
for(ny $i=0;$i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r_conds[$i +1][0],
sqgl _quot e(sql _escape($$r_conds[$i +1][1]));

Add the where clause if we have one
$do_sql .= " WHERE ". join " AND ", @bhere if @here;

restrictions (DONT put commas!)
$do_sql .=" ". join" ", @%$r_restr} if @S$r_restr};

d("SQ.: $do_sql") if DEBUG

do query
return $sel f->{dbh}->sel ectrow array($do_sql);

} # end of sub sqgl _get_matched_val ue

HHAHBHHH R R AR R R R R R R R R R H B R R R

return a single row of first matched rows, by conditions and

restrictions. The rowis being inserted into @esults_row array
(valuel,value2,...) or empty () if none matched

#

(caller(0))[3]."]")

restrictions

#

sql _get _mat ched_val ue($t abl e_nane, $col um,\ @ondi ti ons,\ @estrictions);
#

colum is a name of the colum

#

conditions nust be an array so we can path nore than one colum with
the sanme nane.

@onditions = (colum => ['conp_sign',’'value'],

foo = ['>",15],

f oo = ['<,30],

)

#

#

#

#

i f DEBUG

sql _get _matched_rowm\ @esul ts_r ow, $t abl e_nane, \ @ol ums, \ @ondi ti ons,\ @estrictions);

14

15 Feb 2014

mod_perl and Relational Databases 1.7.2 The My::DB module

The sub knows automatically to detect and quote strings

restrictions is a list of restrictions like ('order by email’)

#

colums is a list of colums to be returned (username, fnane,...)
#

condi tions nust be an array so we can path nore than one colum with
the same nane.

@onditions = (colum => ['conp_sign', ' value'],

foo = ['>",15],

f oo = ['<,30],

)

#

#

#

#

HHHHHBHBH B H RSB HRH R 7R
sub sql _get _matched_r ow{

ny $self = shift;

my $r_row = shift || {};

ny $table = shift || '";

ny $r_cols = shift || [];

ny $r_conds = shift || [];

ny $r_restr = shift || [];
we want to print in the trace debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG
build the query

ny $do_sql = "SELECT ";

$do_sqgl .= join ",", @$r_cols} if @$r_cols};

$do_sqgl .= " FROM $table ";

ny @here = ();

for(ny $i=0;$i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r_conds[$i +1][0],
sqgl _quot e(sql _escape($$r_conds[$i +1][1]));

Add the where clause if we have one
$do_sql .= " WHERE ". join " AND ", @bhere if @here;

restrictions (DONT put commas!)
$do_sql .=" ". join" ", @%$r_restr} if @S$r_restr};

d("SQ.: $do_sql") if DEBUG

do query
@$r_row} = $sel f->{dbh}->sel ectrow array($do_sql);

} # end of sub sqgl _get _natched_row

HHHHHBHHHH B HBH BB R H B R H R R R R R H R AR
return a ref to hash of single matched row, by conditions

and restrictions. return undef if nothing natched.

(columl => val uel, colum2 => value2) or enpty () if non matched

#
#
#
#
sqgl _get _hash_ref ($tabl e_nanme,\ @ol unms, \ @ondi ti ons,\ @estrictions);
#

15 Feb 2014 15

1.7.2 The My::DB module

colums is a list of colums to be returned (usernanme, fnane,...)
#

conditions nust be an array so we can path nore than one colum wth
the same nane.

@onditions = (colum => [’'conp_sign’,’'value'],

f oo = ['>",15],

foo = ['<,30],

)

The sub knows automatically to detect and quote strings

#

restrictions is a list of restrictions like ('order by email’)

#
HUH AR HHAH B SR PR AR AR AR B TR RS
sub sql _get _hash_ref{

ny $self = shift;

ny $table = shift || '";
my $r_cols = shift || [];
ny $r_conds = shift || [];
my $r_restr = shift || [];

we want to print in the trace debug node
".(caller(1))[3]." - ".

d("[".(caller(2)[3]."

build the query

ny $do_sql = "SELECT ";

$do_sql .= join ",", @%r_cols} if @%r_cols};
$do_sqgl .= " FROM $table "

ny @here = ();

for(my $i=0;%i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r _conds[$i],
$$r_conds[$i +1][0],

sqgl _quot e(sql _escape($$r_conds[$i +1][1]));

Add the where clause if we have one
$do_sql .= " WHERE ".

restrictions (DONT put commas!)
$do_sql .=

d("SQ.: $do_sqgl") if DEBUG

do query

$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);

$sel f - >{ st h} - >execute();
return $sel f->{sth}->fetchrow hashref;

} # end of sub sql _get_hash_ref

(caller(0))[3]."1")

join" AND ", @here if @where

"t join " ", @%r_restr} if @$r_restr};

HHHHBHHH B R R R H R R R R R H R R R

returns a reference to an array, matched by conditions and

restrictions, which contains
there are no rows to return

16

one reference to array per row. |If
returns a reference to an enpty array:

i f DEBUG

15 Feb 2014

mod_perl and Relational Databases

[

[arrayl],
[arrayN],
1

)
results in
WHERE foo > 15 AND foo < 30

to make an OR | ogic use (then ANDed)
@onditions =
foo
bar

)i

=> ['=,[15,24]],
=> ['=",[16,21]],

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
results in
#

#

#

#

#

restrictions is a list of
#

HUH T R
sub sql _get _matched_rows_ary_ref{

ny $sel f = shift;
nmy $table = shift || '’;
ny $r_cols = shift || [];
ny $r_conds = shift || [];
ny $r_restr = shift || [];
we want to print in the trace debug node

d("[".(caller(2))[3]."

build the query

ny $do_sqgl = "SELECT ";

$do_sql .= join ",", @$r_cols} if @%r_col s};
$do_sqgl .= " FROM $table ";

my @here = ();

for(my $i=0; $i <@ $r _conds}; $i =$i +2) {
if (ref $$r_conds[$i +1]1[1] eq ' ARRAY') {
mul ti
push @here, map {"($_)"} join " OR ",
map { join " ",
$r_conds->[$i],
$r_conds->[$i +1][0],
sqgl _quot e(sql _escape($_));
} @$r_conds->[$i+1][1]};
} else {

15 Feb 2014

colums is a list of colums to be returned (usernane,

@onditions = (colum => [’conp_sign', value'],
foo = ['>",15],
f oo = ['<",30],

" (caller(1))[3]." - ".

1.7.2 The My::DB module

$ref = sqgl _get_natched_rows_ary_ref ($tabl e_nanme,\ @ol ums,\ @ondi ti ons,\ @estrictions);

fname,...)

condi tions nust be an array so we can path nore than one colum wth
the sane nanme. @onditions are being cancatenated with AND

(colum => ['conp_sign ,[’'valuel ,’'value2']],

WHERE (foo = 15 OR foo = 24) AND (bar = 16 OR bar = 21)
The sub knows automatically to detect and quote strings

restrictions like (’order by email’)

(caller(0))[3]."]1") if DEBUG

condition for the same field/conparator to be ORed

17

1.7.2 The My::DB module

single condition for the sanme field/conparator
push @here, join " ",

$r_conds->[$i],

$r_conds->[$i +1][0],

sqgl _quot e(sql _escape($r_conds->[$i +1][1]));
}
} # end of for(ny $i=0; $i <@ $r_conds}; $i =$i +2

Add the where clause if we have one
$do_sql .= " WHERE ". join " AND ", @bhere if @here;

restrictions (DONT put commas!)
$do_sql .=" ". join" ", @%$r_restr} if @$r_restr};

d("SQ: $do_sqgl") if DEBUG

do query
return $sel f->{dbh}->sel ectal |l _arrayref($do_sql);

} # end of sub sql _get _matched rows_ary_ ref

HHHHHHH AR B AR A R A R R A R R R AR R
insert a single rowinto a DB

sql _i nsert_row($t abl e_nane, \ %dat a, $del ayed) ;

data is hash of type (columl => valuel ,colum2 => value2 ,)

* The sub knows automatically to detect and quote strings

#

#

#

#

#

#

$del ayed: 1 => do del ayed insert, 0 or none passed => i nmedi ate

#

#

#

* The insert id delayed, so the user will not wait untill the insert

wll be conpleted, if nmany select queries are running

#

HHHFHBHBHBHHHHRHBHBHBH AR

sub sql _insert_row
ny $sel f shift;
ny $table shift |
ny $r_data = shift ||
ny $del ayed = (shift)

| 17;
{}
? ' DELAYED : '’

we want to print in the trace debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG

build the query

ny $do_sqgl = "I NSERT $del ayed | NTO $table ";

$do_sql ="(".join(",", keys % $r_data}).")";

$do_sql = " VALUES (";

$do_sql =join ",", sqgl_quote(sqgl_escape(values % $r_data}));
$do_sql ="

d("SQ.: $do_sql") if DEBUG

do query
$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);

18 15 Feb 2014

mod_perl and Relational Databases 1.7.2 The My::DB module

$sel f->{sth}->execute();

} # end of sub sql _insert_row

REHHBHHHABHHHBHHHRBHHBRHAAREH AR H A ARSI HARHH AR EH AR A AR HHBAHH AR HHHREHAR

update rows in a DB by condition

#

sql _update_rows($tabl e_nanme, \ %lat a,\ @ondi ti ons, $del ayed)

#

data is hash of type (columl => valuel ,colum2 => value2 ,)
#

conditions nust be an array so we can path nmore than one colum with
the sanme nane.

@onditions = (colum => ['conp_sign',’'value'],

f oo = ['>",15],

f oo = ['<,30],

)

#

$del ayed: 1 => do del ayed insert, O or none passed => i medi ate
#

* The sub knows automatically to detect and quote strings

#

#

HHHHHHHAH B H SRR AR H
sub sql _updat e_r ows{

ny $self = shift;

ny $table = shift || '’;

ny $r_data = shift || {};

nmy $r_conds = shift || [];

ny $del ayed = (shift) ? 'LOWPRIORITY : '’

we want to print in the trace debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]1") if DEBUG

build the query

ny $do_sql = "UPDATE $del ayed $table SET ";
$do_sql =join ", ",

map { "$_=".join "",sql _quote(sql _escape($$r_data{$_})) } keys % $r_data};
ny @here = ();

for(ny $i=0;$i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r _conds[$i +1][O] ,
sql _quot e(sql _escape($$r_conds[$i +1]1[1]));
}

Add the where clause if we have one
$do sql .= " WHERE ". join " AND ", @where if @bhere;

d("SQL: $do_sqgl") if DEBUG

do query
$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);

$sel f - >{ st h}->execute();

ny ($count) = $sel f->{sth}->fetchrow array

15 Feb 2014 19

1.7.2 The My::DB module

#
d("Result: $count") if DEBUG

} # end of sub sqgl _update_rows

BHHH AR HH AR R R R R

delete rows from DB by condition

sqgl _del et e_r ows($t abl e_nane, \ @ondi ti ons);

condi tions nust be an array so we can path nore than one colum wth

the sanme nane.

foo = ['>",15],
f oo = ['<,30],
)

* The sub knows automatically to detect and quote strings

#
HHHHHHHAH B H RS R AH RS H R
sub sql _del ete_rows{

ny $sel f = shift;

ny $table = shift || '";

ny $r_conds = shift || [];
we want to print in the trace debug node

d("[".(caller(2))[3]." - ".(caller(1))[3]." - ".
build the query

ny $do_sqgl = "DELETE FROM $table ";

ny @here = ();

for(my $i=0;%i <@ $r_conds}; $i =$i +2) {
push @here, join " ",
$$r_conds[$i],
$$r_conds[$i +1][0],
sqgl _quot e(sql _escape($$r_conds[$i +1][1]));

#
#
#
#
#
#
@onditions = (colum => [’'conp_sign’,’'value'],
#
#
#
#
#
#

(caller(0))[3]."]")

Must be very careful with del etes, imagi ne sonehow @were is
not getting set, "DELETE FROM NAME"' del etes the contents of the table

warn("Attenpt to delete a whole table $table fromDB\n!!!"), return unless @where

Add the where clause if we have one
$do_sql .= " WHERE ". join " AND ", @bhere

d("SQ: $do_sql") if DEBUG
do query
$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);

$sel f->{sth}->execute();

} # end of sub sqgl _del ete_rows

HUHHHHHHH R HH R R
executes the passed query and returns a reference to an array which

20

i f DEBUG

15 Feb 2014

mod_perl and Relational Databases 1.7.2 The My::DB module

contains one reference per row If there are no rows to return
returns a reference to an enpty array.
#
$r_array = sql _execute_and_get _r_array($query);
#
#
HHHHHHHAH B H SRR AR H
sub sql _execute_and_get _r_array{
ny $sel f = shift;
ny $do_sql =

we want to print in the trace debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG

d("SQ: $do_sqgl") if DEBUG
$sel f - >{dbh}->sel ectal | _arrayref ($do_sql);

} # end of sub sqgl _execute_and_get_r_array

RHHHARHHABHHHBHHH AR HH BB HHABHHHBRH AR H BB HH R HHABH AR HH R HHRRHH BRI

lock the passed tables in the requested node (READ| WRI TE) and set
internal flag to handl e possible user abortions, so the tables wll
be unl ocked thru the END{} bl ock

#

sql _l ock_tables(’tablel’,’|ocknode’,.., tableN ,’|ocknode

| ocknode = (READ | WRI TE)

#

_side_effect_ $self->{lock} ="'On";

#

HUHHHAHHHH R H R
sub sql _| ock_t abl es{

ny $self = shift;

ny %mdes = @;

return unl ess %des;

ny $do_sqgl = 'LOCK TABLES ’;
$do_sql .=join ",", map {"$_ $nodes{$_}"} keys %ndes

we want to print the trace in debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG

d("SQ.: $do_sqgl") if DEBUG

$sel f->{sth} = $sel f->{dbh}->prepare($do_sql);
$sel f->{sth}->execute();

Enough to set only one |ock, unlock will renove them al
$sel f->{lock} =’'On";

} # end of sub sqgl _| ock_tables

HHH T I R R R R R R
unlock all tables, unset internal flag to handl e possible user
abortions, so the tables will be unlocked thru the END{} bl ock

15 Feb 2014 21

1.7.2 The My::DB module

#

sql _unl ock_t abl es()

#

_side_effect_: delete $sel f->{lock}
#

HHHHHHHBH B H R AT R H 7
sub sql _unl ock_t abl es{
ny $self = shift;

we want to print the trace in debug node
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG

$sel f - >{ dbh} - >do(" UNLOCK TABLES")

Enough to set only one |ock, unlock will renove them al
del ete $sel f->{l ock};

} # end of sub sqgl _unl ock_tables
#
#
return current date formatted for a DATE field type
YYYYMVDD
#
Note: since this function actually doesn’t need an object it’'s being
called without paraneter as well as procedural call
HUHHHRHBH R
sub sql _dat e{
ny $self = shift;

ny ($nday, $non, $year) = (localtime)[3..5];
return sprintf "99.4d%. 2d%®. 2d", 1900+$year , ++$non, $nday;

} # end of sub sqgl _date

#

#

return current date formatted for a DATE field type

YYYYMVDDHHMVES

#

Note: since this function actually doesn’t need an object it’'s being
called without paraneter as well as procedural call

HEH R

sub sql _datetine{
ny $self = shift;

ny ($sec, $m n, $hour, $nday, $non, $year) = local tinme();
return sprintf "9%0.4d%0. 2d%0. 2d%0. 2d%®. 2d%®. 2d", 1900+$year , ++$non, $nday, $hour, $mi n, $sec

} # end of sub sqgl _datetine
Quote the |ist of paraneters. Paraneters consisting entirely of

digits (i.e. integers) are unquoted.
print sql _quote("one",2,"three"); => 'one’, 2, 'three

Hit#HH R
sub sqgl _quote{ map{ /~(\d+|/NULL)$/ 2 $_: "V'$ \'" } @ }
Escape the |list of parameters (all unsafe chars like ",’ are escaped)

22 15 Feb 2014

mod_perl and Relational Databases 1.7.3 My::DB Module’s Usage Examples

We nake a copy of @ since we might try to change the passed val ues,
producing an error when nodification of a read-only value is attenpted
it

sub sql _escape{ my @ = @; map { s/ ([\'\\])/\\$1/g;$_} @ }

DESTROY nakes all kinds of cleanups if the fuctions were interuppted
before their conpletion and haven’'t had a chance to nmake a cl ean up.
HHHHIHH R R
sub DESTROY{

ny $self = shift;

$sel f->sql _unl ock_tables() if $self->{lock};
$sel f->{sth}->finish if $self->{sth};
$sel f - >{dbh}->di sconnect i f $sel f->{dbh};

} # end of sub DESTROY

Don't renove
1

module

(Note that you will not find this on CPAN. at least not yet :)

1.7.3 My::DB Module’s Usage Examples

To useMy: : DB in your script, you first have to creatéa: : DB object:

use vars gw($db_obj);
ny $db_obj = new My::DB or croak "Can't initialize My::DB object: $!'\n";

Now you can use any &fy: : DB's methods. Assume that we have a table cailatker where we store
the names of the users and what they are doing at each and every moment (think about an online commu-
nity program).

| will start with a very simple query--1 want to know where the users are and produce statigticker
is the name of the table.

fetch the statistics of where users are

nmy $r_ary = $db_obj->sql _get _matched_rows_ary_ref
("tracker",

[gWm where_user _are)],

)

nmy Y%tats 0);

ny $total 0;

foreach ny $r_row (@r_ary){
$stat s{ $r_row >[0] } ++;
$t ot al ++;

}

15 Feb 2014 23

1.7.3 My::DB Module’s Usage Examples

Now let's count how many users we have (in talder s):
nmy $count = $db_obj - >sql _count _mat ched("users");
Check whether a user exists:

'stas’;

ny $username =
= $db_obj - >sqgl _count _mat ched

ny $exists
("users",
[usernane => ["=", $user nane]]

);

Check whether a user is online, and get the time since she went ailinee(is a column in the
tracker table, it tells us when a user went online):

my @ow = ();
$db_obj - >sql _get _mat ched_r ow
(\@ow,

"tracker",

[* UNI X_TI MESTAMP(si nce)’],
[usernane => ["=", $usernane]]

);

if (@ow {
ny $idle = int((tine() - $rowf0]) / 60);
return "Current status: Is Online and idle for $idle mnutes.";

}

A complex query. | join two tables, and | want a reference to an array which will store a slice of the
matched queryl M T $of f set, $hi t s) sorted byuser nane. Each row in the array is to include
the fields from theuser s table, but only those listed @ er bose_col s. Then we print it out.

ny $r_ary = $db_obj->sql _get _matched_rows_ary_ref
(
"tracker STRAIGHT_JO N users",
[map {"users.$_"} @erbose_col s],

[1,

["WHERE tracker. user nane=users. user nane",
"ORDER BY users. user nane",
"LIMT $of fset, $hits"],

)E

foreach my $r_row (@r _ary){
print
}

Another complex query. The user checks checkboxes to be queried by, selects from lists and types in
match strings, we process input and build@er e array. Then we want to get the number of matches
and the matched rows as well.

my @earch_keys = gw choi cel choice2);
my @here = ();

Process the checkboxes - we turn theminto a regul ar expression
foreach (@earch_keys) {

next unl ess defined $g->paran($_) and $g->paran($_);

24 15 Feb 2014

mod_perl and Relational Databases 1.7.3 My::DB Module’s Usage Examples

ny $regexp = "[".join("", $g->paran($))."1";
push @here, ($_ => [' REGEXP', $regexp]);
}

Add the itens selected by the user fromour lists
sel ected => exact match
push @where, (country => [' =", $qg->param(’ country’')]) if $qg->paran(’ country’);

Add the paraneters typed by the user
foreach (gwW(city state)) {
push @were, ($_ => [’ LIKE , $g->param($_)]) if $qg->param($_);

}
Count all that natched the query
nmy $total _matched_users = $db_obj->sql _count _nmat ched
(
"users",
\ @vher e,
)
Now process the orderby
nmy $orderby = $qg->paran(’orderby’) || 'usernane’;

Do the query and fetch the data
my $r_ary = $db_obj->sql _get _nmatched_rows_ary_ref
(

"users",

\ @li spl ay_col umes,

\ @vher e,

[" ORDER BY $orderby",
"LIMT %$of fset, $hits"],

)E

sql _get _mat ched_rows_ary_ref knows to handle botRed andANDed params. This example
shows how to useR on parameters:

This snippet is an implementation of a watchdog. Our users want to know when their colleagues go online.
They register the usernames of the people they want to know about. We have to make two queries: one to
get a list of usernames, the second to find out whether any of these users is online. In the second query we
use theOR keyword.

check who we are | ooking for
$r_ary = $db_obj->sqgl _get _matched_rows_ary_ref

("wat chdog",
[gw(wat ched)],
[usernane => ['=', $usernane)],

1,
)

put theminto an array
ny @watched = map {$_->[0]} @$r_ary};

my %ratched = ();

Does the user have some registered usernanes?

if (@atched) {

15 Feb 2014 25

1.8 Maintainers

Try to fetch all the users who match the usernanmes exactly.

Put it into an array and conpare it with a hash!
$r_ary = $db_obj->sql _get _natched_rows_ary_ref
("tracker",
[gWM usernane)],
[usernane => ['=",\ @atched],
]
)

map {$matched{$_->[0]} = 1} @ %r_ary};

Now %rat ched i ncl udes the usernames of the users who are being

wat ched by $username and currently are online.

1.8 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

1.9 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

26

15 Feb 2014

http://stason.org/
http://stason.org/

mod_perl and Relational Databases Table of Contents:

Table of Contents:

1| mod perI and Relational Databalses

1.1 [Descriptio : :

1.2 IWhy Relatlonal (SQL) Databalses)

1.3 |Apache::DBI - Initiate a persistent database connéctlon
1.3.1[Introductioh : :
1.3. 2|When should this module be used and when shouldn t |t be used? .
1.3.3[Configuratign . :
1.3.4| Preopening DBI connectld)ns
1.3.5| Debugging Apache::DBI
1.3.6| Database Locking Risks
1.3.7| Troubleshooting

1.3.7.1| The Morning Bug .)

1.3.7.2[Opening Connections With D|fferent Parambters
1.3.7.3[Cannot find the DBI handler

1.3.7.4{ Apache:DBI does not werk. .

1.3.7.5(Skipping connection cache during server slartup
1.3.7.6[Debugging code which deploys DBI

1.4|mysqgl use result vs. mysql store rgsult.

1.5 | Transactions Not Committed with MySQL InnoDB Talbles

1.6 |Optimize: Run Two SQL Engine Servyers e

1.7 |Some useful code snippets to be used with relatlonal Dallabases 1o
1.7.1| Turning SQL query writing into a short and simplejtask 10
1.7.2| The My::DB module . . e
1.7.3| My::DB Module’s Usage Examplles 28

1.8[Maintainegs 26

1.9[Authorf 26

©C OO NN~NOOOORRRWWWNNNDNBE

15 Feb 2014 i

	1€€mod_perl and Relational Databases
	1.1€€Description
	1.2€€Why Relational (SQL) Databases
	1.3€€Apache::DBI - Initiate a persistent database connection
	1.3.1€€Introduction
	1.3.2€€When should this module be used and when shouldn't it be used?
	1.3.3€€Configuration
	1.3.4€€Preopening DBI connections
	1.3.5€€Debugging Apache::DBI
	1.3.6€€Database Locking Risks
	1.3.7€€Troubleshooting
	1.3.7.1€€The Morning Bug
	1.3.7.2€€Opening Connections With Different Parameters
	1.3.7.3€€Cannot find the DBI handler
	1.3.7.4€€Apache:DBI does not work
	1.3.7.5€€Skipping connection cache during server startup
	1.3.7.6€€Debugging code which deploys DBI

	1.4€€mysql_use_result vs. mysql_store_result.
	1.5€€Transactions Not Committed with MySQL InnoDB Tables
	1.6€€Optimize: Run Two SQL Engine Servers
	1.7€€Some useful code snippets to be used with relational Databases
	1.7.1€€Turning SQL query writing into a short and simple task
	1.7.2€€The My::DB module
	1.7.3€€My::DB Module's Usage Examples

	1.8€€Maintainers
	1.9€€Authors

